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Cocatalysts influence the activities, stereoselectivities, and mo-
lecular weights of polyalkenes produced by metallocene catalysts.1

Examples include (1) large increases in catalyst activities with
lessened coordinating ability of the anions (e.g., B(C6F5)4

- more
active than MeB(C6F5)3

-) and (2) substantial affect of the cocatalyst
on the stereoselectivities of both syndiotactic2 and stereoblock
polymerizations3 of propene. It is generally agreed that the role of
cocatalysts is the creation of catalytically active metallocenium
cations with cocatalyst-derived counterions. The profound influences
exerted by cocatalysts in polymerization reactions raise fundamental
mechanistic questions: Do changes in the counterion change the
transition state for incorporation of alkene into the metal-alkyl
bonds? Is the nature of this transition state primarily binding of
the alkene to the metal or migration of the polymer chain onto the
coordinated alkene? To address these questions, we undertook the
experimental determination of12C/13C kinetic isotope effects (KIEs)
and computational modeling of these effects for the polymerization
of 1-hexene catalyzed byrac-(C2H4(1-indenyl)2)ZrMe2 (1) with
different cocatalysts.

Previous applications of KIEs to probe mechanisms of alkene
polymerization have focused on D isotope effects and yielded
widely varying results.4 For example, Stille and co-workers4c

reported that D KIEs for cyclization of titanocene 2-alkyl-6-heptenyl
chlorides are very different for MgCl2 and MAO activators. In their
review of olefin insertion reactions in metallocene polymerization
catalysis, Grubbs and Coates4a propose that the variability of
observed KIEs arises from changes in (1) the rate-limiting step
(alkene binding vs insertion) and (2) the extent ofR-agostic
interaction in the transition state.

Direct kinetic measurements of the effect of cocatalyst on
metallocene-catalyzed alkene polymerizations are hampered by the
difficulty of determining active site concentrations.5 The advantage
of the KIE as a kinetic probe is its insensitivity to active site
concentration. Application of the13C NMR techniques recently
popularized by Singleton and co-workers6 to metallocene-catalyzed
polymerization of 1-hexene yields precise KIEs7 for positions C1-
C4 of 1-hexene (Table 1).

Three observations warrant comment: (1) There is no KIE for
positions C3 and C4. (2) The KIE at C2 is consistently about twice
that for C1. (3) Although the observed productivities varied by more
than 2 orders of magnitude, there is no significant difference in
KIEs among the cocatalysts (solvent polarity, chlorobenzene vs
toluene, slightly affects the KIEs). We conclude that, within the
sensitivity of the KIE measurements,the transition state in which
alkene is irreVersibly fixed into the growing polymer does not
change significantly as a function of the cocatalyst.

Computational and empirical data support the proposition that
propagation proceeds via two distinct steps: alkene coordination
followed by irreversible insertion.8 Most compellingly, empirical
data from the Casey group9 demonstrate that alkene coordination
to neutral Cp*2Y-alkyls occurs as a distinct, reversible step prior
to insertion. Empirical measurements of the free energies of alkene
dissociation in tethered alkyl-alkene complexes of zirconocene
cations reveal activation free energies for alkene dissociation (in
CD2Cl2, 245-248 K) that are generally smaller (11.1-14.4 kcal/
mol,10a10.5-12.8 kcal/mol10b) than the activation free energies for
initiation and propagation (17.5 and 14.6 kcal/mol, respectively,
extrapolated to 248 K) measured5 in toluene solution for 1-hexene
polymerization catalyzed by1.

We have computed12C/13C KIEs for the reaction of propene
with Cp2Zr(i-Bu)(ClCH3)+ (2) cation (Scheme 1).11 This model was
chosen for three reasons: (1) Very different rates of insertion into
Zr-Me vs Zr-CH2-polymer bonds5 ordain a more realistic model,
the i-Bu group, than Me for the growing poly-1-alkene. (2)
Extensive computational times and complicated reaction pathways
preclude modeling with a full anion. (3) Trial computations revealed
that gas-phase displacement of ClCH3 is approximately thermo-
neutral; thus, replacement of the anion with ClCH3 minimizes
computational times but avoids the bias of an unreasonably exo-
or endothermic alkene association step. Reactants, products, and
transition states were computed for four elementary steps: alkene
association and insertion steps along both 1,2- and 2,1-pathways.
For each elementary step, multiple transition states were found,
corresponding to either different conformations of thei-Bu group
or different orientations of attack at the metal center by propene.
We were unable to locate a transition state for a concerted
association/insertion pathway.* Address correspondence to this author. E-mail: landis@bert.chem.wisc.edu.

Table 1. Experimental KIEsa for the Polymerization of 1-Hexene
with Different Cocatalysts

cocatalystb C1 C2 C3 C4 C5

B(C6F5)3 1.009(4) 1.019(6) 0.999(1) 1.001(1) 1
Al(C6F5)3 1.010(2) 1.017(3) 1.000(0) 1.000(2) 1
PhNMe2H+B(C6F5)4

- 1.009(1) 1.017(1) 1.001(2) 1.001(2) 1
MAO 1.007(4) 1.018(1) 1.000(1) 1.000(1) 1
B(C6F5)3

c 1.003(1) 1.013(2) 0.999(1) 0.999(1) 1

a Standard deviations are shown in parentheses.b Toluene as solvent.
c Chlorobenzene as solvent.
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Computed KIEs decisively discriminate between reversible and
irreversible alkene association processes. Numerical results are listed
in Table 2. Not unexpectedly, the computed KIE1 ()12Ck1/

13Ck1) and
EIE1 ()12CK1/

13CK1; EIE represents the equilibrium isotope effect)
values for the association step are close to unity, indicating that
alkene association is isotope insensitive. In contrast, KIE2 for the
migratory insertion reaction is substantial, with average values ca.
1.02 and 1.04 at C1 and C2, respectively.12 If alkene association
were reversible, the expected KIE would be the product EIE1 ×
KIE2. If alkene association were irreversible, the KIE would be
fixed at the forward association step and be equal to KIE1. As the
results in Table 2 demonstrate,only if alkene binding is reVersible
are the computed KIEs consistent with those obserVed.

Computed KIE values, whether averaged over all trajectories or
taken from the lowest energy path, consistently reproduce the
signature experimental observation: KIE(C2) ≈ 2 × KIE(C1). We
emphasize that our computational and experimental results do not
preclude a concerted (one-step) process with significant “insertion”
character.

In summary, we report the first determination of empirical and
computed12C/13C kinetic isotope effects for metallocene-catalyzed
polymerization of a simple alkene. Experimental KIE values
demonstrate that the transition state in which the alkene is
committed to irreversible insertion into the growing polymer does
not vary significantly with the cocatalyst. Computations support
reversible alkene association at the catalysts followed by irreversible
migratory insertion, although a concerted process cannot be
eliminated. Assuming a two-step process, the dramatic effect of

cocatalyst on reaction rate arises from the effect of the counterion
on the alkene association equilibrium constant.
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Scheme 1

Table 2. Computed KIEs, EIE, and Free Energies for Propene
Association and 1,2-Insertion Steps at 2

isotope effect

reaction step C1 C2 C3

∆G or ∆G‡

(kcal/mol)

KIE1
a 1.023 1.001 0.985 11

averageb 1.006(9) 1.001(4) 0.999(14) 11 to 17

EIE1
a 1.007 0.991 0.980 -3

averageb 1.000(7) 0.995(5) 0.990(13) -3 to 1.4

KIE2
a 1.010 1.035 1.012 10

averageb 1.019(8) 1.043(7) 1.007(5) 10 to 17

EIE1 × KIE2
a 1.017 1.035 0.992

averageb 1.019(8) 1.039(7) 0.997(12)

obsd KIEc 1.009(1) 1.017(2) 1.000(2)

a Value computed for lowest energy pathway.b Average value for all
computed pathways, with uncertainties given in parentheses.c Average
experimental KIE for all cocatalysts.
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